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Abstract

Designers of distributed embedded systems require
communication synthesis to more effectively explore the de-
sign space. Communication synthesis creates or instanti-
ates the necessary software and hardware required to allow
system components to exchange data. This work examines
the problem of mapping a high-level specification to an ar-
bitrary, but fixed architecture that uses particular bus pro-
tocols for interprocessor communication. The approach
detailed in this paper illustrates that global considerations
are necessary to achieve a correct implementation. A com-
munication model is presented that allows for easy retar-
geting to different bus topologies and protocols. The
effectiveness of this approach is demonstrated by mapping
a high-level specification to different architectures.

1 Introduction

With the decreasing cost of microprocessors, design-
ers of embedded systems routinely consider a distributed
system as the solution for their application. These systems
are characterized by having heterogeneous processors con-
nected by heterogeneous busses. For instance, the HP La-
serJet design has three different processors and 2 different
busses connecting the processors as well as many point to
point connections [9]. The designers selected the most ap-
propriate connections between the processors based upon
the communication requirements of the functions mapped
to the processors. _

Designers of distributed systems are faced with many
choices in connecting the various processors together. Up-
ender and Koopman [13] list many standard bus protocols
commonly used in embedded systems. Microprocessors
targeted toward the embedded market incorporate support
for the most popular protocols directly on chip. Semicon-
ductor companies manufacture dedicated communication
chips, chip sets, and hardware macros which directly imple-
ment particular protocols. Such products abstract away
many of the low-level protocol details making it attractive
for designers to choose a known protocol instead of creaing
an arbitrary or proprietary one.

When designing a distributed embedded system, it is
necessary to consider many different points in the design
space. Designers require tools that allow them to map the
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Fig. 1: Communication Synthesis

same high-level specification onto these different architec-
tures. Communication synthesis allows designers to inves-
tigate the tradeoffs between different allocations,
partitionings, bus topologies, and bus protocols by manag-
ing the low-level protocol details necessary to realize an
implementation. Consider the example shown in Fig. 1.
The high-level behavioral specification calls for process S,
to communicate with Sp. A designer evaluating an archi-
tecture with twe processors connected by a Controller
Area Network (CAN) [15] bus maps S, and S, to proces-
sors P, and Py, respectively. Given the designer mapping,
communication synthesis allocates a communication chip
and interfaces it to P,, uses the built-in CAN controller of
P}, modifies and optimizes the the device-drivers and the
real-time kernels to match this configuration and allow
communication over the CAN bus.

The above example considers the communication of
two processes in isolation from the rest of the system.
However, to effectively synthesize the communication for
a fixed protocol, global system analysis is required. This
analysis includes the frequency and type of events that will
be transmitted on the bus and the bus topology. Bursty
communication patterns may require local queues so that
important events are not lost. If there is not a direct con-
nection between communicating components, then inter-
mediate processes will be required to relay the data from

one bus to another. Protocol details such as basing bus ar-
bitration on message or processor priorities along with the
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Fig. 2: Communication in the robot

messages' response time constraints impact the allocation of
priorities. A poor allocation may yield an infeasible system
whereas a different allocation with the same target architec-
ture may give a realizable implementation.

Recently there has been much attention focused on the
problem of communication synthesis for distributed real-time
embedded systems. These efforts either do not consider the
global properties of the communication links or consider the
global properties but map to one non-standard protocol.
Ernst and Benner [5] proposed a communications library with
a standard API (Application Program Interface). However,
protocols based on message priorities require an allocation of
the priorities in addition to providing an API. Gajski et al.
[6] consider all of the events on the bus, but they implement
a simple low-level bus protocol and do not address real-time
kernel synthesis. Yen and Wolf [14] address the problem of
heterogeneous processors connected via arbitrary bus topolo-
gies. However, they discount standard protocols as uncom-
mon in embedded systems and assume an abstract protocol
based on processor priorities. Gasteier and Glesner [7] at-
tempt to synthesize busses which do not require arbitration.
This approach is more suitable for data-flow oriented systems
that have more predictable communication patterns than con-
trol-dominated systems. All of these approaches attempt to
synthesize the bus topology.

This paper addresses the problem of synthesizing the
communication for an arbitrary, yet static, bus topology. In-
stead of optimizing designers out of the design process, this
approach allows designers to easily map their high-level de-
signs to various implementation architectures for compari-
son. Designers can rapidly explore many more points in the
design space than current techniques allow. The synthesis
tool requires a behavioral description and a mapping to a par-
ticular architecture. All of the remaining details of system
communication are synthesized.

Throughout this paper we will use the example of the ro-
bot control system shown in Fig. 2. The robot has two funda-
mental modes of operation. In joystick mode, the robot
responds to a joystick manipulated by the operator. In auto-
pilot mode the robot is controlled by a program running in
the auto-pilot process. If at any time in either mode the oper-
ator releases the dead man switch, the robot immediately
halts. A control arbiter process determines the operational
mode of the system. The logger process records the periodic
broadcasts from the wheels controller indicating the current
heading and velocity.

2 Communication Model

We have developed a communication model suitable for
reactive real-time embedded systems. The model is based on
a set of processes which communicate by exchanging non-
blocking messages. A non-blocking protocol is more appro-
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priate for distributed real-time systems than a blocking
protocol [8] partly because it decouples computation
from communication. When a process executes a send
statement it returns immediately after passing the mes-
sage to the real-time kernel. Messages from other pro-
cessors are received asynchronously via an interrupt
indicating a message arrival. The real-time kernel per-
forms minimal processing of the message and returns
control to the previously executing process. Upon a
time-triggered system interrupt, the received message is
made visible to the receiving process. This is similar to
synchronous digital logic where the inputs are not valid
until a clock edge latches them.

A message is composed of an event name with op-
tional data. In the robot, the dead man switch sends a
DeadManHalt message with no data. The wheels con-
troller sends a WheelsHead message with the current
heading included in the data field. Messages may have
multiple destinations.

Processes may specify receiving attributes that state
how large a queue the system should allocate for a par-
ticular message. A queue size of one indicates an over-
write policy. If a different instance of the same message
type arrives, then any previous unreceived message is
lost. Along with the queue size, the designer can specify
the behavior in case the queue becomes full. The choices
available are: drop the incoming message, queue the in-
coming message and drop the message at the queue's
head, or send a queue full message to the application
with the message to be dropped. The final attribute that
may be specified is a response time constraint. Similar
attributes may be specified for the sending of messages.
In the robot, all command messages have an overwrite
policy without notification. Only the logger process has
a queuing policy with notification. This particular noti-
fication routine simply records that data was lost.

A behavioral description consists of a set of commu-
nicating processes. A process contains state information
that may be used for intraprocess communication. In the
case of the wheels controller, the state variables include
the current heading and velocity. A process has output
ports for sending generated messages and input ports for
receiving messages. There is 4 unique message port for
each message type. The wheels controller has two output
ports, WheelsHead and WheelsVel, and many input ports
for the messages generated by the joystick, auto-pilot,
and control arbiter.

A handler is a subroutine invoked to perform a ser-
vice on behalf of a message. The typical handler con-
sumes the triggering message, modifies state variables,
generates outgoing messages and terminates. A handler
may runs for a bounded amount of time and executes
with run to completion semantics [10]. That is, once a
handler begins executing it has the illusion of running
without preemption. No other handlers from the same
process may begin until the currently running handler
terminates. Therefore, even though a handler may be
preempted, the state of the process remains constant
while the handler is not executing. The real-time kernel
may preempt a handler for two reasons. First, an incom-
ing message may need to be retrieved or an outgoing
message may need to be sent. Second, the scheduler may
allow a handler in a different process to execute.

A process may contain time-triggered handlers



specified with an invocation rate. The real-time kernel sched-
ules these handlers at the appropriate times. The wheels con-
troller has a control loop that runs every second. It checks the
current heading with the target heading and if necessary turns
the wheels a fixed increment to correct the heading.

A mode is a mapping of incoming messages to the han-
dlers that consume them. The mode definitions simplify
analysis for the scheduler by defining mutually exclusive be-
havior and allow the filtering of unwanted messages. In the
robot's manual mode, the wheels controller responds to joy-
stick messages and ignores auto-pilot messages.

3 Communication Synthesis

Communication synthesis is the process of realizing the
communication links between the processes that exchange
messages. The designer provides a behavioral specification
using the communication model presented earlier. This be-
havioral specification includes the processes, a mapping of
the generated messages to their destination processes, and the
response time constraints on the messages. In addition to the
behavioral specification, the designer provides an architec-
tural specification which includes a list of processing ele-
ments, a mapping of the processes to the processing elements,
a bus topology with bus protocols, and a mapping of messag-
es to particular busses. Communication synthesis is divided
into interprocessor communication and intraprocessor com-
munication.

3.1 Interprocessor Communication

Interprocessor communication synthesis customizes the
behavioral description to realize the appropriate bus protocol,
introduces a device-driver to communicate either directly
with the bus or via a communications chip, and enhances the
real-time kernel to implement the message attributes regard-
ing queuing and notification. The first step is to insure that
there is a direct link between each message source and its des-
tination. If not, then the designer must specify a path from the
message's source to its destination. A routing process is au-
tomatically inserted on each processor along this path. There
is at most one routing process per processor.

Routing a message from one bus to another illustrates the
need for a global approach to communication synthesis. The
designer places an initial response time constraint relative to
the time the message is generated. The communication syn-
thesis tool must calculate a new response time for this mes-
sage so that it can effectively determine the appropriate
priorities along the message's path. Previous work in deter-
mining the worst-case delay for transmitting a message such
as [12] require restrictions which are incompatible with our
communication model. Currently we use optimistic estimates
and leave for future work algorithms that give more realistic
timing results.

The next step groups all of the messages that will be sent
on a particular bus. Protocol attributes are assigned to the
messages and processors based on the arbitration scheme of
the bus. We have modified the taxonomy in [13] to focus on
the attributes which are required for protocol synthesis. Our
taxonomy considers protocols that base arbitration on mes-
sage priority, master/slave, time-based priority, and proces-
sor priority. This taxonomy also includes protocols not
suitable for global prioritization such as Ethernet. The de-
signer-specified bus protocol (e.g. CAN) is automatically
placed into this taxonomy and the protocol attributes are de-
termined accordingly.

Message-based priority protocols give the most flexibil-
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ity to the synthesis tool in meeting the timing require-
ments of the system. Priorities are assigned according to
the response time requirements of the individual messag-
es on the bus. Messages with smaller response times
have higher priority and ties are arbitrarily broken but
consecutively allocated.

In a master/slave protocol the master processor polls
the slave processors to see if any require the bus. Under
this protocol, there are different higher-level protocols
that can be implemented. For instance, it is possible to
have message priorities by having the master poll all of
the slaves and grant the bus to the slave with the highest
priority message to send. However, such a protocol has
a high overhead. A different protocol is to grant the bus
to each slave in a round-robin or some other pre-deter-
mined order. We are investigating metrics to automati-
cally select the most appropriate policy based on the
global analysis of the designer's specification. Under
both policies the bus master is chosen to be the processor
with the least utilization. When implementing polling in
a pre-determined order, the order the slaves are granted
the bus is based on the frequency and response time con-
straints of the generated messages.

A variation of the master/slave protocol is one based
on time. Under this protocol, time is conceptually the
master and all of the processors are slaves. Each proces-
sor is granted a time slice during which it can send mes-
sages over the bus. Similar to the master/slave protocol
above, the processors are granted the bus in a fixed order
with the timing master selected as the processor with the
lowest utilization.

Processor-based priorities are problematic for real-
time systems. For instance consider a process that gen-
erates an infrequent yet short response time message My,
but normally generates long response time messages M.
If the processor is given a high priority to guarantee the
timing constraint of My, then all of the M, messages in-
herit this high priority, potentially causing a priority in-
version with messages from other processors on the bus.
Currently we allocate processor priorities according to
the shortest response time of any message sent on the
bus. As timing analysis techniques improve it may be
possible to perform a better allocation of processor prior-
ities. If the allocation results in an infeasible solution,
the designer may either repartition the processes to dif-
ferent processing elements or manually assign the pro-
cessor priorities.

After the protocol specific attributes have been de-
termined, the behavioral specification may require mod-
ification to reflect these attributes. For message-based
priority protocols, the priority must be incorporated into
the message send. Note that simply having a send API
(subroutine call) is insufficient to realize the protocol be-
cause the message priorities are not determined until af-
ter the communication synthesis tool has analyzed all of
the messages on the bus. The processes may come from
reusable modules so assigning static priorities at the be-
havioral level is not possible. The tool must modify the
send call to incorporate this additional information.
Consider the following example from the robot where all
of the processes are mapped to their own processor and
communicate viaa CAN bus (see Fig. 4a). The CAN pro-
tocol has message-based priorities with non-destructive



class CANDriver {
1 send handier with daia
canSend (CanPriority priotity, Byte data, Byle size) {
CanMessage m (priofity, data, size);
disableCanChiplinterrupt();
writeToChipOrSendQ(m);
enableCanChipinterrupi();
)
canChipHandler () {
/i called when either message sent or ariving
if (messageArriving()) {
CanMessage m = getMessage();
placeinKemelButfer (m);
}else sendNextMessageOnQ()

1
Fig. 3: CAN device-driver

contention for the bus. When using this protocol, all of the
send subroutine calls in the high-level specification that send
messages without data are automatically replaced with the
new call canSend (canPriority). Sends for messages that
contain data are replaced with the call canSend (canPriori-
ty, canData, dataSizeInBytes). The joystick process sends
a DeadManHalt message to the wheels process. Because this
message has the smallest response time, it is assigned the
highest priority, CanP0. The joystick handler deadManHan-
dler contains the statement send (DeadManHalt) which is
replaced with the subroutine canSend (CanP0). The wheels
handler reportHeading broadcasts the current heading of the
robot and makes the call send (WheelsHead, heading).
This statement is replaced with the call canSend (CanP7,
heading, 2). The CAN protocol has a limit of eight data
bytes. Messages larger than eight bytes are automatically di-
vided into multiple canSend calls with consecutive priori-
ties.

After the send calls have been modified, the next step is
to allocate the queues according to the individual message at-
tributes from the behavioral specification. The queues have
a common API called by the device-drivers for the particular
bus protocol. This allows the the real-time kernel to send and
receive messages independently from the execution of the
processes.

Once the queues have been inserted, the bus protocol de-
vice-driver is instantiated from a protocol library. These de-
vice-drivers are written using the communication model from
the previous section. The device-driver has two primary han-
dlers that execute during the normal operation of the system.
The first one is the protocol specific send routine which exe-
cutes in the application handler. For the CAN protocol this is
the canSend routine from above. The role of the send han-
dler is to create a protocol specific message packet and write
this packet directly to the communications chip or to the ker-
nel's send buffer. The second entry point is responsible for
receiving messages and sending messages that are on the send
queue. The handler that directly interacts with the communi-
cations chip responds to messages (actually interrupts) from
the chip. In the case of the Siemens SAE 8§1C90 Stand Alone
Full CAN Controller [1], the chip generates interrupts when
either a message arrives or is transmitted. For the CAN de-
vice-driver, this handler is canChipHandler (see Fig. 3).
For communication chips that do not generate transmit inter-
rupts, the chip's handler in addition to responding to receive
interrupts, is time-triggered to insure that the send queue is
emptied. Such details are encapsulated in the protocol li-
brary.

The high-level device-drivers instantiated- above make
low-level calls that interact with the communications chip. If
the processor has built-in support for a bus protocol, then the
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Fig. 4: Robot mapped to different architectures

given interface to this internal peripheral involves read-
ing and writing particular registers or memory locations.
However, it may be necessary to use an external commu-
nications chip such as the SAE 81C90. In [4] and [3] it
was shown how to automatically connect peripheral de-
vices to a microprocessor by synthesizing glue logic and
reflecting the new hardware interface to the device in the
low-level device-driver. Using these techniques, we can
synthesize a bus interface for processors which do not in-
ternally support a given protocol.

The final step in interprocessor communication syn-
thesis is to modify the real-time kernel to deliver messag-
es to the appropriate processes. When a message arrives
it is placed on a system queue according to the message's
receive attributes. A time-triggered kernel handler
checks the incoming queues, strips out protocol informa-
tion encoded in the message and passes the scheduler a
list of handlers that are ready to execute. The scheduler
selects a handler to execute by passing it an incoming
message.

3.2 Intraprocessor Communication

Synthesizing communication for intraprocessor
messages involves similar steps as interprocessor mes-
sages. However, all intraprocessor communication oc-
curs via shared memory. Since the handlers execute with
run to completion semantics and there is only one source
for a particular message type, there is no contention for
an internal channel. Therefore, it is sufficient to use a
simple API that implements the appropriate queue se-
mantics respecting the high-level message attributes.
The real-time kernel maps the sending messages to the
corresponding internal destination channels.

4 Examples

To demonstrate the usefulness of this approach to
communication synthesis, the robot described above was
mapped to different bus topologies and protocols. We
used these mappings as a proof of concept and did not at-
tempt to achieve a minimal cost system. Since we fo-
cused on the problems associated with synthesizing the
communication, abstract microprocessors are used in the
mappings. However, using the techniques in [4] and [3],
it is not difficult to use off-the-shelf processors or pro-
CEssOr cores.



The first mapping places each process on its own
processor and all of the processors are connected via a
CAN bus. Portions of this implementation were dis-
cussed above and are shown in Fig. 4. The priorities
were allocated according to the response time attributes
on the individual messages.

The next mapping uses two different CAN busses
with an I°C bus connecting them (see Fig. 4b). The joy-
stick process generates the message DeadManHalit
which has the shortest response time of any message in
the system. This message must be delivered from P, to
the wheels process on Py and the control arbiter process
on P,. The designer indicates that this message will be
routed via szand its I2C bus to P4. Routing processes are
inserted on I“C processors, Py, and Py4. Since this highest
priority message travels from Py, to Py, processor Py, is as-
signed a higher IC priority. This example clearly shows
that global considerations are necessary when synthesiz-
ing the communication.

The next example maps the robot to processors con-
nected by the NuBus [2] protocol. NuBus arbitrates
based on processor priority but uses a fair arbitration
scheme. All processors wanting the bus assert a bus re-
quest when the bus is idle. All of these requesting pro-
cessors will be granted the bus once in priority order
before any other processor can request the bus. The
highest priority processor has the largest processor iden-
tity (ID) code. Since this is a processor-based priority
protocol, IDs are assigned according to the shortest re-
sponse time message on each processor. Because the
joystick process generates DeadManHalt, processor P, is
assigned the largest ID.

The final example maps the robot to processors on a
Firewire (IEEE 1394 High Performance Serial Bus)
backplane bus [11]. Firewire supports multiple arbitra-
tion schemes. Under fair arbitration the protocol is sim-
ilar to NuBus. Under isochronous access, a timing
master begins of a timing cycle with a nominal period of
125ps. Upon detecting a cycle start, those processors
with isochronous data arbitrate for the bus. For the robot,
all data transfers occur via isochronous arbitration. The
Control Arbiter has the smallest utilization so processor
Py, is made the timing master (highest priority processor)
running the time-triggered timingMaster handler with a
period of 125pus.

5 Conclusion

Designers of distributed embedded systems require
tools to explore in detail different points in the design
space. Communication synthesis allows designers to
easily investigate the tradeoffs between different archi-
tectures by managing the low-level protocol details re-
quired to realize the communication among the system
components. A global view of communication synthesis
is necessary to map to those fixed protocols which are
most suitable for real-time systems. The communication
model that was presented allows for easy retargeting to
different protocols and architectures. This approach al-
lows designers to map their high-level specifications to
arbitrary architectures. These ideas were validated by
mapping a high-level specification to different bus topol-
ogies and protocols.
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The next step in providing the designer with feed-
back regarding a particular implementation is to incorpo-
rate the synthesized system into a timed simulator. This
will allow the designer to obtain performance statistics
necessary to evaluate different designs. There are many
improvements possible regarding interprocessor com-
munication. One such optimization is to bundle multiple
messages into a single message to reduce bus overhead.
Another research area is to more clearly identify the core
attributes that communication protocols share making it
easier to incorporate new protocols into a protocol Ii-
brary. We are currently investigating new algorithms to
give better derived response time constraints for messag-
es routed from one bus to anther. We are also looking at
other protocols such as Universal Serial Bus and PCI bus
to insure that these ideas are applicable to the widest
range of bus protocols.
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